
Sieben Geisslein - Architecture

Niklas Mehner

October 3, 2007

Contents

1 Introduction 2
1.1 Design Assumptions . 2

2 Core Layer 3
2.1 Core Tasks . 3
2.2 BTree . 5
2.3 DataStore . 5
2.4 Garbage Collection . 5
2.5 Recovering . 5

3 Server Layer 6
3.1 Transactions . 6
3.2 Access Control . 6

4 Network Layer 6

5 Client Layer 6
5.1 Transactions . 6
5.2 Optimistic Transactions . 6
5.3 Persistent Objects . 6

5.3.1 Verification . 6
5.3.2 Instrumentation . 6

1

6 Applications 6
6.1 Overview . 6
6.2 Application . 6
6.3 Classloading . 7
6.4 Dependencies . 7

7 Feder 7
7.1 Introduction . 7
7.2 Classloading . 7

1 Introduction

SiebenGeisslein is a transactional object store. Its features include near trans-
parent persistence, ACID, multi-user support, crash-recovery and scalability.

1.1 Design Assumptions

While SiebenGeisslein shows many features of a DBMS, it is not aimed at
replacing existing RDBMS or OODBMS, but rather at replacing initialization
files, registry-databases and (if it proves to be scalable enough) the whole file
system.

Obviously the way of using SiebenGeisslein is much different from the
approaches described above.

While there are many different ways of using SiebenGeisslein, I am focus-
ing on laying a good foundation for M”archenwald, a desktop environment,
I am planning to base on SiebenGeisslein.

This modell assumes a central event dispatching loop:

while (true);

Transaction t = createTransaction();

try {

Event e = getNextEvent();

dispatchEvent(e);

t.commit();

} catch (Exception e) {

t.abort();

}

}

2

As you can imagine this approach requires transactions, that are very
fast. On the other hand it is not important to know immediatly wether the
transaction has failed (For example in a word processor an event might be a
key-event. If the transaction fails, the user has eventually be informed, that
this has happened, but not before the next keystroke is to be processed).

This observations leads to the use optimistic transactions (section 5.2).
Changes are committed to the clients cache immediatly, but committing the
changes on the server can be deferred.

A positive side effect of this is, that multiple transactions can be com-
bined. And because of code locality many changed can be merged. In a
situation where load on the server gets high and response time goes up, more
work is done on the client and the server has to process less transactions (the
same goes for network bandiwdth).

The architecture of SiebenGeisslein consists of four separate layers (Figure
1), which are described in the following sections.

2 Core Layer

The core layer (→ org.siebengeisslein.core.Core) is responsible for implement-
ing a mapping from object IDs (OIDs) to core entries (→ org.siebengeisslein.core.CoreEntry).
A core entry consists of a byte array containing the object data and a long
array containing OIDs.

The core layer provides atomicity, consistency and durability. Isolation
is provided by the server layer.

The core layer is also responsible for the garbage collection.

2.1 Core Tasks

Set Entry

Add Entry

Add Node

3

Figure 1: SiebenGeisslein Layers

4

2.2 BTree

2.3 DataStore

2.4 Garbage Collection

2.5 Recovering

When the Core performs an unplanned exit, it has to recover on the next
startup.

Set Entry

Add Entry

Add Node

5

3 Server Layer

3.1 Transactions

3.2 Access Control

4 Network Layer

5 Client Layer

5.1 Transactions

5.2 Optimistic Transactions

5.3 Persistent Objects

5.3.1 Verification

5.3.2 Instrumentation

6 Applications

6.1 Overview

This section describes the application support in SiebenGeisslein.

6.2 Application

An application (→ org.siebengeisslein.application.Application) consists of
code and data. The application is identified through a globally unique ap-
plicationId. To allow multiple parallel installations of the same application,
there is also a localId, which identifies one local installation of the applica-
tion.

When an object belonging to an application is persisted, the localId and
the classId (an id identifying the class within the application) are used to
identitfy the class of the object.

When the object is loaded back from persistent storage, the application is
located and an application classloader (→ org.siebengeisslein.application.ApplicationClassLoader)
instantiated to load the class of the object.

6

6.3 Classloading

6.4 Dependencies

Not yet supported.

7 Feder

7.1 Introduction

This section describes some aspects of the implementation of the Feder IDE.

7.2 Classloading

7

	Introduction
	Design Assumptions

	Core Layer
	Core Tasks
	BTree
	DataStore
	Garbage Collection
	Recovering

	Server Layer
	Transactions
	Access Control

	Network Layer
	Client Layer
	Transactions
	Optimistic Transactions
	Persistent Objects
	Verification
	Instrumentation

	Applications
	Overview
	Application
	Classloading
	Dependencies

	Feder
	Introduction
	Classloading

